NFOBRIEF |  $\mathbf{EMC}^{2}_{\cdot}|$ 

### The **DIGITAL UNIVERSE** of OPPORTUNITIES

EMC DIGITAL
UNIVERSE

RICH DATA

& the Increasing

Value of the

**INTERNET OF THINGS** 

**GET STARTED** 



# The Digital Universe Is Huge And Growing Exponentially

UNIVERSE

With Research & Analysis by IDC

4.4 zettabytes In 2013, there were almost as many bits in the Digital Universe as stars in the physical universe

0

44 ||||| zettabytes ||||||

2013

If the Digital Universe were represented by the memory in a stack of tablets, in **2013** it would have stretched two-thirds the way to the Moon\*

Source: IDC, 2014 \* iPad Air - 0.29" thick, 128 GB



By **2020**, there would be 6.6 stacks from the Earth to the Moon\*



# **Emerging Markets** Will **Surpass Mature Markets** by **2017**





90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

2012 2013 2014 2015 2016 2017 2018 2019 2020

Canada, Australia, NZ

Source: IDC, 2014

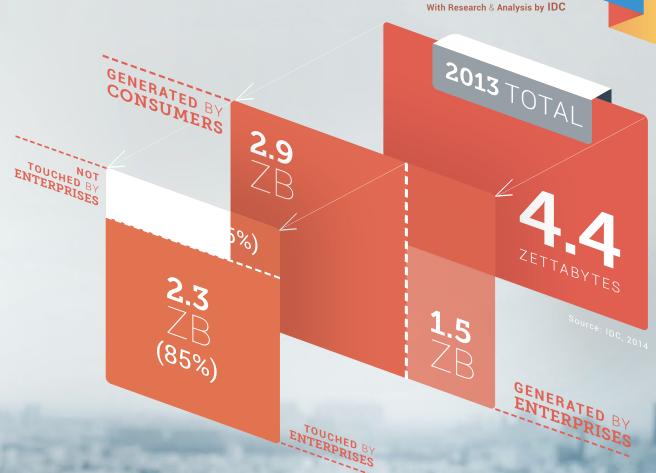


With Research & Analysis by IDC



In **2013**, mature markets represented **60%** of the Digital Universe

By **2020**, that will flip-flop, with emerging markets (including China, Brazil, India, Russia, and Mexico) representing **60%** 




## 2/3 of DU Is Created by Consumers,

but **Enterprises** 

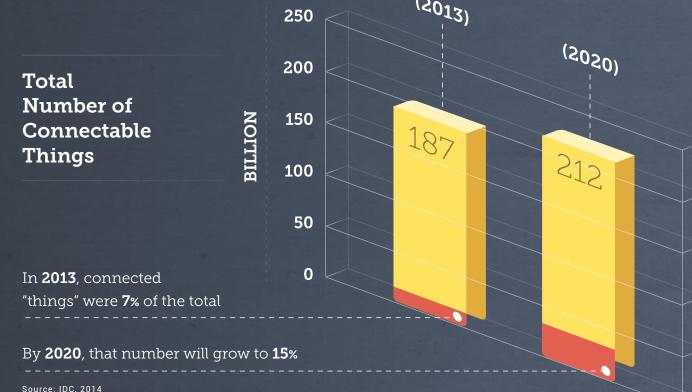
Are Responsible for **85%** of This





EMC DIGITAL

# The Internet of Things Is Exploding


EMC DIGITAL
UNIVERSE
INFOBRIEF

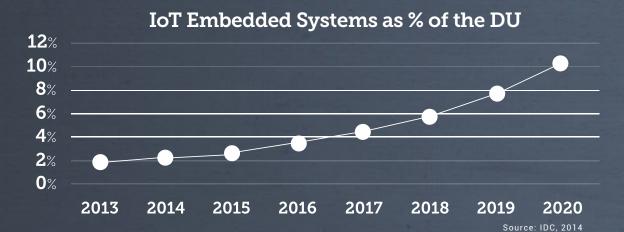
With Research & Analysis by IDC

The "Internet of Things" is fueled as analog functions managing the physical world migrate to digital functions

It consists of adding computerization, software, and intelligence to things as varied as cars, toys, airplanes, dishwashers, turbines, and dog collars

While not all "things" are connected to the Internet, **20 billion** of them were in 2013, and **32 billion** will be by 2020






The Internet of Things
Will Contribute an
Increasingly Large
Amount to the

Digital Universe

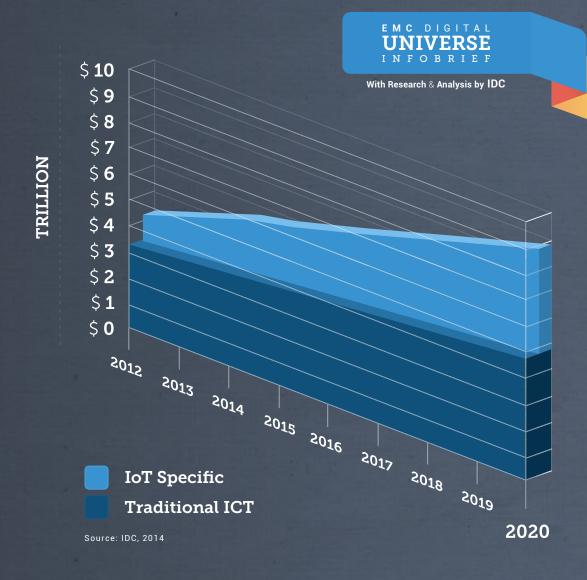


With Research & Analysis by IDC



The network connecting devices in the Internet of Things is characterized by automatic provisioning, management, and technology

#### It includes:


- Intelligent systems and devices
- Connectivity enablement
- Platforms for device, network, and application enablement
- Analytics and social business
- Vertical industry solutions



# The Internet of Things Will **Subsume** the Information and Communication Technology Industry

Over time, the Internet of Things (IoT) will grow to subsume the traditional Information and Communication Technology (ICT) industry

IoT is growing over three times as fast as traditional ICT, and by 2020 will nearly equal all other ICT spending Buyers and users of IoT technology and services will realize huge business benefits





## Mobility Is a Key Driver of the DU



Mobile "Connected Things"
Generate of **18**% of the
Digital Universe



In 2020, the figure grows to **27**%

- Generated by Mobile "Connected Things"
- Rest of Digital Universe



With Research & Analysis by IDC

Mobile "things" include devices such as RFID tags, GPS devices, smart cards, cars, toys, and even dog collars





## **5** Ways ot will Create New Opportunities



With Research & Analysis by IDC











## New business models

The IoT will help companies create new value streams for customers, speed time to market, and respond more rapidly to customer needs.

Real-time information on mission-critical systems

Enterprises can capture more data about processes and products more quickly and radically improve market agility.

Diversification of revenue streams

The IoT can help companies monetize additional services on top of traditional lines of business.

#### Global visibility

The IoT will make it easier for enterprises to see inside the business, including tracking from one end of the supply chain to the other, which will lower the cost of doing business in far-flung locales.

# Efficient, intelligent operations

Access to information from autonomous endpoints will allow organizations to make on-the-fly decisions on pricing, logistics, and sales and support deployment.



# Five Criteria to Extract Maximum Value from Data

The Digital Universe is too big and too varied for companies to make sense of all the data it contains. Fortunately, that isn't necessary. Instead, they need to target the highest value (i.e., "target-rich") data. IDC defines target-rich data using the following criteria:



#### Easy to access.

Can you obtain the data, or is it hopelessly locked away on end-user PCs, shuttling about on closed-end data processing systems, or trapped in proprietary embedded systems?



#### Real-time.

Is the data available in real-time, or does much of it come too late to drive real-time decisions and actions?



#### Footprint.

Could top-notch analysis of this data affect a lot of people, major parts of the organization, or lots of customers?



With Research & Analysis by IDC



#### Transformative.

Could this kind of data, properly analyzed and acted upon, actually change a company or society in a meaningful way?



# Intersection synergy.

Could this kind of data have more than one of the above attributes?



# **High-Value Data** Is a Manageable Subset of the Total

The size, diversity, and rapid growth of the Digital Universe can be daunting. Companies face the challenge of implementing predictive analytics, self-service business intelligence and analytics, and easy-to-use tools for data discovery and real-time decision making

The good news: companies don't have to wade through the vastness of the **entire** Digital Universe; they can find the best opportunities by focusing on the highest-value, target-rich data

UNIVERSE
INFOBRIEF

With Research & Analysis by IDC

1.5%

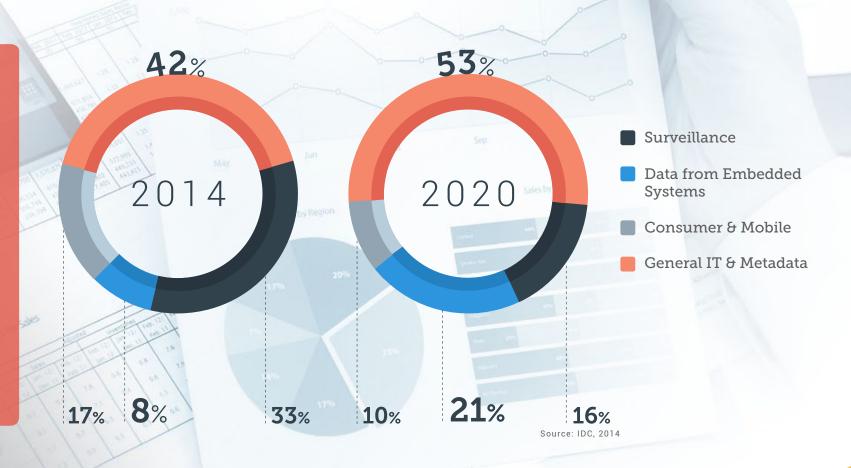
2014

At 1.5% of the total, target- rich data is a much more manageable area of discovery

Source: IDC, 2014



# Data from Embedded Systems Will Represent a Larger Percentage of "Target-Rich" Data


UNIVERSE
INFOBRIEF

With Research & Analysis by IDC

General IT and metadata make up the largest portion of "target rich" data and will continue to grow as Big Data projects expand and the base of metadata grows

The biggest growth is data from embedded systems, fueled by growth of the Internet of Things

The biggest decline is surveillance as the analog-to-digital transition in surveillance winds down





# **Information Security:** Much of the Data that **Needs to Be Protected** Is **Not Yet Protected**



With Research & Analysis by IDC

DIGITAL UNIVERSE

Portion of DU

Not Needing Protection

57%

Portion of DU

Needing Protection

43%

#### **EXAMPLES**:

- Camera phone photos
- Digital video streaming
- Public website content
- Open-source data

More than half of the information in the Digital Universe that needs protection is **not being protected** 

#### **EXAMPLES**:

- Corporate financial data
- Personally identifiable information (PII)
- Medical records
- User account information

Portion **Protected** 

48%

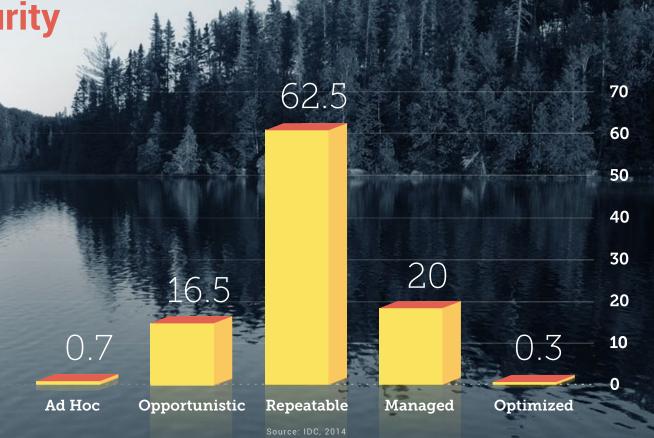
Portion
Not Protected

52%

Source: IDC, 2014



**Organization of Data:** Few


Organizations are at the

**Top of Analytics Maturity** 

**Fewer than 1%** of enterprises have achieved the highest level of Big Data and analytic usage

Big Data tends to be unstructured (e.g., in documents and text files), diversely formatted, of uncertain accuracy and unpredictable value, and often demands real-time attention

To maximize Big Data, organizations must implement new technologies and processes to change today's inflexible data structures to more egalitarian and flexible data "lakes"





EMC DIGITAL

Vith Research & Analysis by IDC

## Talent Pool: IT Pros Will Shoulder a Greater

**Storage Burden** 

While much of the IoT will be self-service and self-supported, someone still needs to architect the data stores, answer helpdesk calls, and maintain the data farms

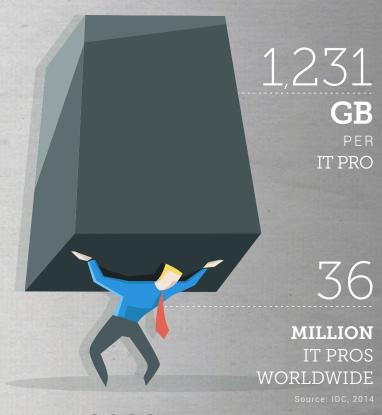
More importantly, IT skills and expertise need to be upgraded to handle new data sources and formats, and the new technologies of today

230

GB

PFR IT PRO

2.8


**MILLION** IT PROS WORLDWIDE



2014

EMC DIGITAL

With Research & Analysis by IDC





2020



## **Three Steps All Enterprises Must Take**



With Research & Analysis by IDC

Many of the biggest challenges posed by the digital universe are organizational. Three steps organizations should take to survive and thrive in the new era are:



Define and implement an enterprise-wide data **governance policy.** 

Put in place a central governance policy to determine who owns the data, who has the right to access it, where is the data, and what are the compliance, privacy, security, and other risk factors associated with the data.



Assess and select the right **software tools.** 

To manage the data deluge, you must choose and deploy the right next-generation software tools for data cleaning, crunching, and consumption, and seamlessly integrate them with legacy systems.



Design and execute a plan for acquiring the required skills and talent.

Define the skills and expertise you need today and will need tomorrow and establish the right processes, programs, and incentives to upgrade your workforce.



## Methodology

This is the seventh time IDC has conducted the Digital Universe study for EMC. It was—and still is—the only study to estimate and forecast the amount of digital data created annually. It has used the same methodology since its inception, allowing the size of the Digital Universe to be traced all the way back to 2005, when "only" 132 exabytes of data were created and replicated.

# Our basic approach to sizing the Digital Universe is to:

- Develop a forecast for the installed base of any of 40 or so classes of device or application that could capture or create digital information.
- Estimate how many units of information—files, images, songs, minutes of video, calls per capita, packets of information—were created in a year.
- Convert the units of information to megabytes using assumptions about resolutions, compression, and usage.
- Estimate the number of times a unit of information might be replicated, either to share or store. Much of this information is part of IDC's ongoing research.



With Research & Analysis by IDC

#### **AVAILABLE STORAGE**

IDC routinely tracks the terabytes of disk storage shipped each year by region, media, and application.

To determine available storage on hard drives, IDC storage analysts estimated storage utilization on capacity shipped in previous years and added that to the current-year shipments.

For optical and nonvolatile flash memory, we developed installed capacity ratios per device and algorithms to calculate capacity utilization and overwriting. In optical, we found there was much more prerecorded storage than storage that was overwritten by users.

